DOI: 10.1089/ars.2009.2934

Using Isoprostanes as Biomarkers of Oxidative Stress: Some Rarely Considered Issues

Barry Halliwell¹ and Chung Yung J. Lee^{1,2}

Abstract

The measurement of F₂-isoprostanes by methods utilizing mass spectrometry is widely regarded as the best currently available biomarker of lipid peroxidation. F₂-isoprostanes and their metabolites can be measured accurately in plasma, urine, and other body fluids using mass spectrometric techniques, and detailed protocols have been published in several papers. However, many clinical studies and intervention studies with diets or supplements, have employed single "spot" measurements of F₂-isoprostanes on either plasma/serum or urine to estimate "oxidative stress." This review examines the validity of the common assumption that plasma and urinary F₂-isoprostane measurements are equivalent. It identifies scenarios where they may not be and where "spot" measurements can be misleading, with examples from the literature. We also discuss the controversial issue of whether and how F₂-isoprostane levels in plasma should be standardized against lipids, and, if so, which lipids to use. *Antioxid. Redox Signal.* 13, 145–156.

Introduction

The discovery of F_2 -isoprostanes (F_2 -IsoPs) by Morrow ▲ et al. (71) almost 2 decades ago has brought a new dimension in free radical lipid peroxidation research by creating a powerful tool to measure oxidative damage. F2-IsoPs measurement by mass spectrometry is a robust chemical measurement relatively free of potential artifacts. Biological samples are subjected to various clean-up techniques and the F₂-IsoPs then measured by gas chromatography/mass spectrometry (GC/MS), gas chromatography tandem mass spectrometry (GC/MS/MS), or liquid chromatography tandem mass spectrometry (LC/MS/MS) (32, 38, 53, 71, 75, 85, 93, 95, 106). Detailed protocols have been published (49, 53, 71, 75, 98, 106), as well as several excellent reviews on this topic (9, 19, 28, 63, 64, 68, 73, 95). F₂-IsoPs are a group of compounds produced via nonenzymatic, free radical attack on arachidonic acid (38, 53, 68, 71, 75, 89), although additional sources have not been ruled out (discussed in Refs. 28 and 112). Other oxidation products of arachidonic acid such as A₂-, E₂-, D₂-, J₂-IsoPs, isothromboxanes, and isoketals have been studied (68, 89, 93), as have A_4 -, D_4 -, E_4 -, and F_4 -neuroprostanes from docosahexaenoic acid (77, 87), and also F₃-IsoPs and A₃/ J₃-IsoPs from eicosapentaenoic acid (13, 26, 76), and hydroxyoctadecadienoic acid products from linoleic acid (73, 107). However, since F₂-IsoPs are the most widely studied "biomarker of oxidative stress" (and are often referred to as the "gold standard" to measure lipid peroxidation), they are the focus of this article. In this commentary, we do not aim to repeat what has already been covered extensively in the literature, but instead to highlight some points which may substantially affect interpretation of IsoPs measurement that have rarely been explicitly considered in the literature to date

One point worth mentioning first is that there is incomplete agreement over what exactly is measured by the different MS techniques in use in different laboratories. Measurement of F₂-IsoPs is often equated to measurement of the compound, 8-isoprostaglandin $F_{2\alpha}$ but there are many other isomers and different MS-based methods measure different mixtures of these (49, 53, 68, 75, 89, 95, 96, 106). Roberts et al. (88) showed that 8-isoprostaglandin $F_{2\alpha}$ can be further metabolized via β -oxidation and subsequent reduction to give 2,3-dinor-8-isoprostaglandin $F_{2\alpha}$ and 2,3-dinor-5,6-dihydro-8prostaglandin $F_{2\alpha}$ respectively (Fig. 1), which are present in significant amounts in human urine (18, 35, 75, 88). F₂-IsoPs can thus be measured (with rigorous attention to methodology) in plasma, serum, urine, and, less often, in other body fluids such as bronchoalveolar lavage fluid, exhaled breath condensate, and saliva (37, 58, 65-67) as "biomarkers" of oxidative stress. It is essential that samples containing lipids (all body fluids except urine) are analyzed at once upon collection, or immediately flash-frozen in liquid nitrogen and stored at minus 80°C in the presence of antioxidants such as BHT (butylated hydroxytoluene) to prevent artefactual oxidation of lipids on storage (53, 71). Hemolysis causes rapid lipid

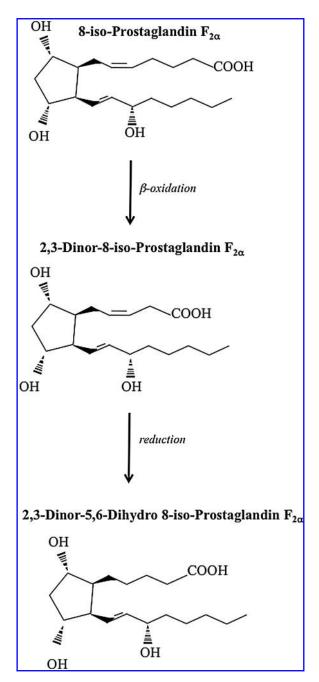


FIG. 1. Metabolism of 8-isoprostaglandin $F_{2\alpha}$.

oxidation and blood samples showing significant hemolysis should be avoided (24, 30).

However, several issues affecting the interpretation of F₂-IsoPs measurements have been given scant attention in the literature. First, many papers are now appearing in which single measurements of F₂-IsoPs levels are made on either plasma or urine samples, often in patients suffering various diseases who are compared with "normal controls." Other published papers report the effects of dietary changes or administration of antioxidant supplements in humans, measuring F₂-IsoPs levels in either plasma or urine before and after the intervention. It seems to be assumed by many authors of such papers that measurements either in plasma or in urine are equivalent, and only one needs to be examined, and often

only at a single time point. The first question we wish to address in this review is whether these assumptions will always be true.

Hydrolysis, Excretion, and Metabolism

Most arachidonic acid (the precursor of F₂-IsoPs) in animals is not "free," but present in esterified forms as phospholipids in membranes and lipoproteins. F₂-IsoPs appear to be initially formed esterified on phospholipids and are then hydrolyzed into free forms by the actions of phospholipase A2 (PLA2) and platelet activating factor acetylhydrolase (PAF-AH) enzymes (19, 68, 69, 71, 89, 103, 104). In human plasma, the latter enzyme seems more important since plasma samples from patients lacking PAF-AH did not release F2-IsoPs from esterified precursors (104). Once liberated, free F₂-IsoPs seem to turn over rapidly, both by metabolism and by excretion (Fig. 1). Indeed, in rabbits after intravenous infusion of 8-iso-PGF_{2 α}, the plasma level was maximum at 1.5 min after injection and then fell rapidly. Urinary excretion of 8-iso-PGF_{2 α} peaked at 20 min and took 60 min or more to normalize (9). In humans, when tritiated [${}^{3}H$]8-iso-PGF_{2 α} was infused into the antecubital vein, 75% of the radioactivity was recovered in urine after 4.5 h (the major compound being 2,3-dinor-5,6-dihydro-8-iso-PGF_{2 α}), and similarly in monkey 95% was recovered in urine after 4 h (88).

A key issue to consider is the rate of hydrolysis of F₂-IsoPs esterified to phospholipids. It often appears to be assumed that this is very rapid and that F₂-IsoPs in either urine or plasma can be measured interchangeably as an index of oxidative stress in disease, toxicology, or nutritional studies. However, a consideration of the available data suggests otherwise. For example, oral administration of CCl₄, a powerful inducer of lipid peroxidation (7, 33, 40, 41, 69, 98) to rodents raised levels of esterified F₂-IsoPs in liver with a peak at 2 h (7, 69) and levels then decreased (Fig. 2). Plasma free F₂-IsoPs also increased, but over a longer time scale, peaking at 8 h (Fig. 2). In another study, plasma free F₂-IsoPs maximized at 4 h, whereas urinary F₂-IsoPs continued to rise up to at least

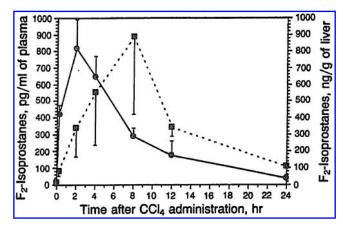
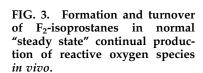
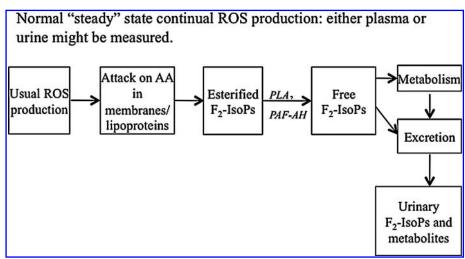


FIG. 2. Time course of appearance of esterified F_2 -isoprostanes in liver (\bullet) in comparison with the appearance of free F_2 -IsoPs in the circulation (\blacksquare) of rats after intragastric administration of CCl_4 (1 ml/kg). Each time point represents the mean \pm SD of levels measured in at least four animals. [Reproduced with permission from Morrow *et al.* (69)]

6 h (7). In a more recent report (41), CCl₄ administered to rats raised plasma total (free + esterified) F₂-IsoPs substantially at 2 h. Levels were lower at 7 h and close to normal at 16 h. However plasma free F₂-IsoPs were still high at 7 h and urinary F₂-IsoPs were also high then, and remained elevated even at 16 h after a larger CCl₄ dose (41). Thus a "spot" sampling of plasma or urine at a single time point to measure F₂-IsoPs could clearly give different impressions if the data were then used to assess the extent of lipid peroxidation (Figs. 2–6). These studies show that hydrolysis can take some hours. Indeed, mice overexpressing PAF-AH showed higher levels of free F₂-IsoPs in bronchoalveolar lavage fluid (104), suggesting that hydrolysis rates can be affected by PAF-AH activity and that this enzyme activity could affect the rate of generation of plasma (free and hence of urinary) F₂-IsoPs.


PAF-AH activity is associated mostly (~70%) with low density lipoprotein (LDL) particles, but there is some in high density lipoproteins (HDL) (43, 46, 103). The distribution of F_2 -IsoPs is also lipoprotein specific (see below). The total plasma activity of PAF-AH could thus be influenced by changes in the ratio of the various plasma lipoproteins that are often seen in disease (103). For example, plasma PAF-AH activity increases in dengue fever (97) and renal disease (80). However, PAF-AH has also been suggested to become inhibited in presence of severe oxidative stress (55, 103, 104) and this may occur in coronary artery disease, hypercholesterolemia, kidney disease, and Parkinson's disease (50, 55, 68, 73, 80, 103, our unpublished observations). If oxidative stress were to increase but PAF-AH decrease (by oxidative stress or otherwise), one can imagine a scenario in which levels of esterified F₂-IsoPs could rise but levels of free F₂-IsoPs could fall, and hence urinary levels might also fall (Fig. 6).


Possible Scenarios

As indicated earlier, for induction of acute oxidative stress, the time course of the levels of F_2 -IsoPs will not be the same in tissues, plasma, and urine and spot measurements may be misleading (Fig. 4). We may have recently seen a clinical example of this. In dengue fever, an acute febrile disease of short duration, we found no changes in F_2 -IsoPs levels in plasma but there were rises in urine levels. We hypothesize that by the time the patients had been tested (after admission to hospital

in an acute febrile state) the elevation of plasma F₂-IsoPs had already passed but urinary levels were still high (97). Some other human diseases represent a similar "acute" oxidative stress, such as ischemia/reperfusion injury in stroke or myocardial infarction, and certain other infectious diseases (reviewed in Ref. 33). Therefore, multiple sequential sampling of blood and/or urine is required to assess the changes in F₂-IsoPs levels and it must be appreciated that plasma and urinary measurements may follow a different time-course (Figs. 2-6). Some authors have also suggested that interpretation of urinary levels of nonmetabolized F₂-IsoPs as an index of total endogenous F₂-IsoPs production can be confounded by the potential contribution of local F₂-IsoPs production in the kidney (112). In addition, it is not impossible that disease or toxins (e.g., cigarette smoke) can alter the rate of metabolism (Fig. 1) of free F_2 -IsoPs. For example, if β -oxidation rates were decreased, urinary F₂-IsoPs might rise, with no change in the overall rate of lipid peroxidation. Hence for urine, the ideal is to measure all three products (Fig. 1), so that all these factors can be taken into account, but this is rarely done.

Of course, some diseases produce chronic oxidative stress, such as atherosclerosis and chronic inflammatory diseases (reviewed in Ref. 33), so one or other of the scenarios in Figures 3-6 will apply. Yet others are acute-to-chronic, for example, in stroke patients there is an acute oxidative stress (as measured by plasma F₂-IsoPs) present at the time of admission to hospital (50). Levels of F₂-IsoPs then decline and give way to a longer-lasting elevation of F2-IsoPs levels, which may be due to inflammatory events (50, and unpublished data). In the reverse sense, if administration of an antioxidant decreases ROS levels and diminishes tissue and plasma esterified F₂-IsoPs levels, it will take a while before such events are reflected in urinary F₂-IsoPs (Fig. 3), and so again timing of measurement is crucial and single spot measurements can be misleading. One cannot safely conclude that an antioxidant is ineffective in vivo on the basis of a single F2-IsoP measurement. It should also be realized that animals are often more responsive to dietary antioxidants than are humans, which raises questions about the validity of some animal models of human disease, particularly neurodegenerative disease (31, 32) and that F₂-IsoPs may sometimes arise by different mechanisms in humans and other animals (discussed in Ref. 19).

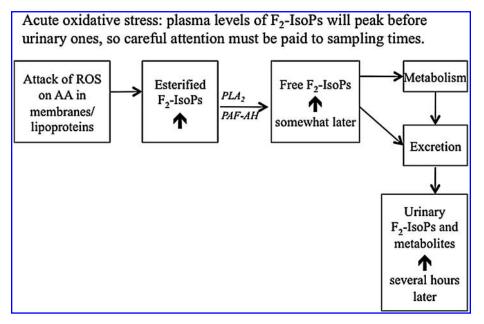


FIG. 4. Formation and turnover of F_2 -isoprostanes in acute oxidative stress (e.g., acute onset of disease leading to ROS production, or administration of CCl_4 or other toxins that involve ROS production.)

What Do the Published Data Show?

Over 2000 articles are available in PubMed on F_2 -IsoPs but few of them measured F_2 -IsoPs in both plasma and urine (indicative of the common view that measurements in either are equivalent as an oxidative stress biomarker). Some of the studies used serum instead. In one early paper, Morrow *et al.* (70) reported a strong correlation between plasma and urinary F_2 -IsoPs levels in a mixed group of smokers and nonsmokers. This is consistent with a majority of data indicative of increased oxidative stress in smokers (reviewed in Ref. 84), although others have found correlations to be less good (106). Taking this strong correlation in Ref. 70 into account, many subsequent studies assumed, as stated earlier, that measuring F_2 -IsoPs in either plasma or urine is sufficient information to determine the oxidative stress status of the subjects investigated. Smoking creates a chronic oxidative stress (33, 70, 84),

so this may be true in smokers. However, our studies in nonsmokers (50) have shown a more complex scenario: correlations between plasma and urinary F₂-IsoPs levels are not always good and are affected by both age and disease.

Tables 1 and 2 summarize observational and interventional studies reported in the literature, that measured both urinary and plasma F₂-IsoPs. Did they always show the same thing? Often yes, but these include multiple cases of observational or intervention studies (with antioxidants or other agents) where neither plasma nor urinary F₂-IsoPs levels changed at all (marked * on Tables 1 and 2). As explained earlier, some of these may need to be readdressed, since "spot" studies can miss things, plus of course the obvious need to consider whether an appropriate dose of antioxidant was used and the issue of inter-individual variability. However, sometimes different results were observed from plasma and urinary measurements (Table 3). For these, it is interesting to speculate

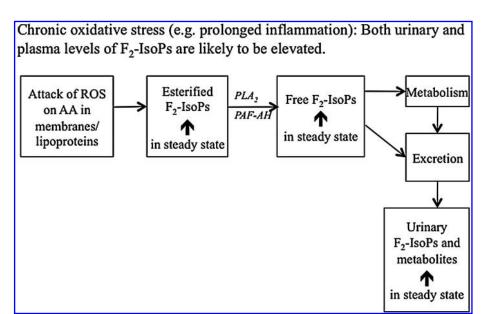


FIG. 5. Formation and turnover of F_2 -isoprostanes in chronic oxidative stress (e.g., prolonged inflammation).

Chronic oxidative stress causing inactivation of PAF-AH: different results may be obtained from plasma or urine. Metabolism Attack of ROS Esterified Free F2-IsoPs F2-IsoPs on AA in membranes/ Excretion lipoproteins (slowed hydrolysis further increases Urinary the plasma level) F2-IsoPs and metabolites

FIG. 6. Formation and turnover of F₂-isoprostanes in chronic oxidative stress associated with inactivation of PAF-AH.

which of the scenarios in Figures 4–6 is responsible (please see the last column of Table 3). Given the methodological issues discussed briefly earlier, we have also indicated in the Tables which methods were employed to measure F_2 -IsoPs.

Expressing the Results

A second important but rarely considered issue is to how to express results of F_2 -IsoPs measurements. F_2 -IsoPs levels in plasma are usually expressed per unit volume (ml of plasma), and in urine per unit creatinine (unless 24 h urine collections are carried out, which is not often done). The expression of urinary levels relative to creatinine seems to work well (discussed in Refs. 49 and 106) unless there are major changes in creatinine production and/or excretion, as can happen in renal failure (27).

However, in several diseases and in some intervention studies with antioxidants or foodstuffs, there are changes in plasma (and probably in tissue) total/esterified arachidonic acid (AA) levels. Should we correct F2-IsoPs levels for this, bearing in mind, for example, that if there is less substrate (esterified AA), then this lipid could possibly be a less important target of ROS? Of course, plasma AA levels are not necessarily representative of levels in the tissue(s) where the oxidative damage is taking place. Nevertheless, in some of our recent work, we have shown that correction for plasma AA levels (which were changed by the conditions examined) can alter the conclusions drawn (47, 50, 97) (e.g., in some cases observing normal F2-IsoPs level but a higher F2-IsoPs to AA ratio because of lower AA). There has been very little debate on this issue. Correction in this way sounds plausible, but is it justified? Are changes in AA in plasma indicative of changes in AA in the membrane lipids in cells that are undergoing peroxidation? Not necessarily. Changes in diet can also transiently change plasma AA levels.

The scenario may be even more complex. Plasma F_2 -IsoPs seem to be usually present mostly in HDL (85), although this may change in some circumstances, since increased plasma

Table 1. Observational Studies that Measured F2-Isoprostanes in Both Plasma and Urine

Study	Subject	Method of Measurement	Reference
Aboutwerat et al. (2003)	Primary biliary cirrhosis patients	ELISA Kit	1
Barden <i>et al.</i> (2001)	Preeclampsia patients	GC/MS	4
Basu <i>et al.</i> (2001)	Spinal cord ischaemia in pigs	RIA	10
Calabrese et al. (2007)	Nephropathic type 2 diabetes patients	HPLC	14
Cederberg et al. (2001)	Diabetic pregnant rats	RIA	15
Dolgoskwa et al. (2009)	Hypertensive patients	ELISA Kit	23
Dogra et al. (2001)	Nephrotic syndrome patients*	GC/MS	22
Feillet-Coudray et al. (2002)	Diabetes mellitus type 2 patients	EIA & ELISA Kit	25
Ishihara et al. (2004)	Pre-eclampsia patients*	RIA	36
Lee et al. (2009)	Ischemic stroke patients, Parkinson's disease patients*	GC/MS	50
Matayatsuk et al. (2007)	Thalassemic patients	GC/MS	56
McKinney et al. (2000)	Pre-eclampsia patients	EIA Kit	58
Montine et al. (2000)	Huntington's disease patients*, Alzheimer's disease patients*	GC/MS	42
Morrow et al. (1995)	Smoker volunteers	GC/MS	70
Oguogho et al. (2000)	Hyperlipoproteinemia patients	Immunoassay	79
Pemberton et al. (2005)	Alcoholic liver disease patients	ELISA Kit	82
Rodrigo et al. (2007)	Hypertensive patients	ELISA Kit	91
Seet et al. (2009)	Dengue fever	GC-MS	97
Sinzinger et al. (2001)	Heterozygous familial hypercholesterolemia patients	EIA Kit	100
Vessby et al. (2002)	Type 1 diabetes patients*	RIA	107
Ward et al. (2004)	Treated hypertensive subjects*	GC/MS	110

^{*}No changes were observed as compared with control subjects.

Table 2. Interventional Studies that Measured F_2 -Isoprostanes in Both Plasma and Urine

Study	Subject	Intervention	Method of Measurement	Reference
Abu–Amsha Caccetta et al. (2001)	Healthy smokers	Wine	GC/MS	2
Barany et al. (2001)	Healthy volunteers	Cyclosporin A* Vitamin E*	GC/MS	3
Barden et al. (2004)	Pregnant atopic women	Fish oil Olive oil*	GC/MS	6
Barden et al. (2007)	Healthy volunteers	Light beer Normal beer*	GC/MS	5
Basu (1999)	Sprague-Dawley rats	CCl ₄	RIA	8
Beltowski et al. (2003)	Wistar rats	Leptin	EIA Kit	11
Beltowski et al. (2005)	Adult Wistar rats	Leptin NAD(P)H oxidase inhibitors (e.g., apocynin)* Tempol*	EIA Kit	12
Chehne et al. (2001)	Atherosclerosis patients	Restarted smoking	Immunoassay	16
Chehne et al. (2002)	Atherosclerosis patients	Smoking cessation	Immunoassay	17
Dhawan & Jain (2004)	Healthy controls Hypertensive patients	Garlic pearls (*healthy control)	ELISA Kit	53
Dillon et al. (2002)	Nonsmokers Smokers	Garlic extract	EIA Kit	21
Janroz–Wisniewska	Wistar rats	Leptin*	EIA Kit	39
et al. (2008)		Apomycin		
Kadiiska et al. (2005)	Fischer rats	CCl_4	GC/MS	40
Kadiiska et al. (2005)	Fischer rats	CCl ₄ Indomethacin Meclofenamic acid	GC/MS	41
Kelly et al. (2008)	Healthy volunteers	Vitamin C*	GC/MS	44
Lee et al. (2006)	Healthy volunteers	Rice	GC ['] /MS	48
,	y	Dark soy sauce	1	
Lee et al. (2009)	Healthy Volunteers	Rice Tomato sauce	GC/MS	47
Levine <i>et al.</i> (2001)	Healthy volunteers	Vitamin C*	GC/MS	51
Loke et al. (2008)	Healthy volunteers	Quercetin* Epicatechin* Epigallocatechin gallate*	GC/MS	54
McAnulty et al. (2007)	Marathon runners	Ibuprofen	GC/MS	57
Meng et al. (2002)	Dahl salt sensitive rats	Low sodium diet* High sodium diet	GC/MS	59
Montero et al. (2000)	Type 1 diabetic nephropathy	Vitamin E	GC/MS	60
Montine et al. (2002)	Sprague-Dawley rats	Kainic acid*	GC/MS	61
Nieman <i>et al.</i> (2004)	Triathlon athletes	Vitamin E*	GC/MS	72
Oguogho et al. (2000)	Heterozygous familial hypercholesterolemia patients	LDL-apheresis	EIA Kit	78
Pemberton et al. (2004)	Autoimmune hepatitis patients	Prednisolone* Azathioprine*	ELISA Kit	81
Pilz et al. (2000)	Atherosclerotic patients	Smoking cessation	EIA Kit	83
Rodrigo et al. (2004)	Wistar rats	Wine	EIA	90
Rogers et al. (2006)	Pre-eclampsia	Oral glucose	GC/MS	92
Sinzinger et al. (2002)	Heterozygous familial hypercholesterolemia patients	Statin	Immunoassay	99
Sodergren et al. (2000)	Sprague-Dawley rats	Vitamin E*	RIA	101
Sodergren et al. (2001)	Sprague-Dawley rats	Vitamin E*	RIA	102
Stojiljkovic et al. (2002)	Obese hypertensive patients	Vitamin E + CCl ₄ Intralipid Haparin	GC/MS	105
Ward et al. (2005)	Treated hypertensive patients	Heparin Vitamin C* Polyphenols*	GC/MS	109
Wolfram et al. (2002)	Patients	Radioiodine	Immunoassay	111
Wu et al. (2007)	Type 2 diabetes mellitus	Tocopherol	GC/MS	112

^{*}The intervention did not change F_2 -IsoPs levels in either plasma or urine. Note the common failure of administration of antioxidants (vitamins C and E, polyphenols) to humans to decrease oxidative damage, at least as measured by F_2 -IsoPs level.

Table 3. Interventional Studies that Measured F2-Isoprostanes in Both Plasma and Urine and Where Discrepancy was Found

			Jo Postsof	F ₂ -Isoprost	F_2 -Isoprostanes ($\uparrow \downarrow \leftrightarrow$)	Connection making of
Study	Subject	Intervention	Measurement	Plasma	Urine	speculative explanation of difference (based on Fig. 3)
Abu-Amsha Caccetta et al. (2001) (2)	Healthy smokers	 Red wine Red wine with alcohol removed White wine 	ELISA Kit	$\begin{array}{c} 1) \\ 2) \\ \downarrow \\ 3) \\ \end{array}$	$\begin{array}{c} 1) \\ 2) \\ 0 \\ 0 \end{array}$	Possible changes in plasma lipoprotein levels affecting plasma levels of F ₂ -IsoPs or rate of hydrolysis of esterified F ₂ -IsoPs ₂
Barden <i>et al.</i> (2007) (5)	Healthy volunteers	1) Light beer 2) Normal beer	GC/MS	$\begin{array}{c} 1) \ \ \downarrow \\ 2) \ \ \downarrow \end{array}$	$\overbrace{2}_{\updownarrow}$	Possible changes in plasma lipoprotein levels affecting plasma levels or rate of hydrolysis?
Lee et al. (2009) (47)	Healthy Volunteers	 Rice + olive oil Rice + olive oil + tomato sauce 	GC/MS	$\overset{1)}{\longleftrightarrow}$	$1) \leftarrow 2) \downarrow \downarrow$	Tomato sauce perhaps changed plasma lipoproteins or PAF-AH activity, or the metabolism of free Fo-IsoPs.
Rogers et al. (2006) (92)	Gestational hypertension/ pre-eclampsia 24–32 weeks Gestational hypertension/ pre-eclampsia 34–37 weeks	Oral glucose	GC/MS	2) 7	(2) (3) (4)	ROS levels rise in preeclampsia when glucose is given thus plasma F ₂ -IsoPs are increased. Subsequently hydrolysis releases urinary F ₂ -IsoPs. However chronic ROS could perhaps have inactivated PAF-AH somewhat so the rise was not seen in urine, or there were changes in plasma lipoproteins enzyme activity or in metabolism of free F ₂ -IsoPs.
Sinzinger <i>et al.</i> (2002) (99)	 Nonsmokers with heterozygous familial hypercholesterolemia patients Smokers with heterozygous familial hypercholesterolemia patients 	Statin	Immunoassay	2 2 1	(2) $\leftarrow \uparrow$	Statins alter cholesterol metabolism and may have lowered LDL and HDL, carriers of the hydrolytic enzymes needed to release free F ₂ -IsoPs for excretion from esterified F ₂ -IsoPs in the phospholipid moiety.
Wu <i>et al.</i> (2007) (112)	Type 2 diabetes mellitus	Tocopherol	GC/MS	→	1	Authors suggested that some urinary F ₂ -IsoPs originated from the kidney and were thus not representative of systemic oxidative stress.

 \uparrow Increase; \downarrow Decrease; \leftrightarrow No change.

F₂-IsoPs were also reported in low HDL subjects (45) and type 2 diabetic patients with low HDL (74). A close association was found in the HDL3c fraction between cholesterol, high PAF activity, and F₂-IsoPs (74). F₂-IsoPs are also present in LDL. Some reports showed levels of blood LDL or oxidized LDL to be correlated with plasma F₂-IsoPs (42, 52). So if we decide to adjust, which do we choose for F₂-IsoPs adjustment: HDL, LDL, the precursor arachidonate, total blood lipids, or none of these? For example, if in a disease or therapeutic intervention there is a large drop in plasma HDL, that may mask an overall rise in HDL F₂-IsoPs content if the F₂-IsoPs data are simply expressed per ml of plasma. We have no simple answer to any of these questions and the issues need to be explored further experimentally. At the moment we simply recommend that investigators record such changes in lipids and lipoproteins, as they frequently happen in disease and sometimes in nutritional studies, and that could influence the interpretation of F₂-IsoPs measurement.

Another factor to consider in nutritional intervention studies is the impact of diet. As far as we know, F₂-IsoPs, although present in foods, are not absorbed through the gut (29, 86). However, we and others have observed a trend for rises in plasma F₂-IsoPs upon 24 h fasting of humans (49, 86), which might be due to changes in plasma lipoprotein patterns and/or rates of hydrolysis of esterified F₂-IsoPs. Refeeding, even with diets containing no antioxidants, can alter these parameters. For example, feeding subjects with rice (poor in antioxidants) altered F₂-IsoPs level, apparently causing transient drops in plasma total F2-IsoPs and a transient rise in urinary levels (48). One should therefore be careful to use feeding controls when testing the effects of antioxidant-rich foods, to check that the mere act of eating was not changing F₂-IsoPs levels and leading to a false conclusion of an antioxidant effect.

One final factor to consider is the potential impact of the metabolism of free F_2 -IsoPs: do ratios of F_2 -IsoPs to their metabolites vary in disease or with nutritional or other interventions (Fig. 1)? Disease or toxins (including cigarette smoking) can often change metabolism. If so, measuring urinary F_2 -IsoPs alone could again be misleading.

Conclusion

The views that spot measurements of F₂-IsoPs in plasma or urine are adequate to detect oxidative stress *in vivo* and how it is affected by diet or disease are obviously simplistic. Even more so is the view that plasma or urine measurements are interchangeable (Fig. 3, Table 3). Preferably, both should be determined, plus the urinary metabolites (Fig. 1). Although some studies have shown that levels of 8-iso-PGF_{2 α} and its metabolites correlate well (94, 96), implying that only one need be measured, this is not always true (e.g., Ref. 106). For example, Dai et al. (18) found that urinary F2-IsoPs level and 2,3,dinor-5,6-dihydro-8-iso-PGF $_{2\alpha}$ showed complex and different relations to breast cancer risk. If one has to make a choice between plasma and urinary measurements, we prefer plasma total F₂-IsoPs level determination. Bearing in mind the limitations in studying effects of dietary interventions and disease, we recommend tracking changes over a period of time, ideally in both urine and plasma.

Because of the rigorous MS-based methods of chemical analysis usually employed, F₂-IsoPs remain a "gold stan-

dard" of lipid peroxidation measurements. As we learn more about them, we need to consider how to refine and interpret F₂-IsoPs measurement (e.g., in the light of blood and tissue lipid changes and their exact origin), so that the gold shines brighter and gives a better reflection of (patho)physiological relevance. In addition, the growing tendency to measure F₂-IsoPs and their metabolites by commercial kits needs proper validation of such "kits" against appropriate mass spectrometric methods (e.g., Ref. 106) in each experimental situation in which such "kits" are employed, as serious reservations have been expressed about the validity of "kit" measurements (28, 34, 53). Differences are nevertheless to be expected, since even GC/MS, GC/MS/MS, and LC/MS/MS may measure somewhat different entities, whereas an antibody might be specific for a single IsoPs isomer (106). Always bear in mind the chemistry behind what you are measuring.

Acknowledgment

We are grateful to the Biomedical Research Council of Singapore for their research support (BMRC 03/1/21/18/213 and BMRC 04/1/21/19/324).

References

- Aboutwerat A, Pemberton PW, Smith A, Burrows PC, McMahon RFT, Jain SK, and Warnes TW. Oxidant stress is a significant feature of primary biliary cirrhosis. *Biochim Biophys Acta* 1637: 142–150, 2003.
- Abu–Amsha Caccetta R, Burke V, Mori TA, Deilin LJ, Puddey IB, and Croft KD. Red wine polyphenols, in the absence of alcohol, reduce lipid peroxidative stress in smoking subjects. Free Radic Biol Med 30: 636–642, 2001.
- 3. Barany P, Stenvinkel P, Ottosson–Seeberger A, Alvestrand A, Morrow J, Roberts LJ 2nd and Salahudeen AK. Effect of 6 weeks of vitamin E administration on renal haemodynamic alterations following a single dose of neoral in healthy volunteers. *Nephrol Dial Transplant* 16: 580–584, 2001.
- Barden A, Ritchie J, Walters B, Michael C, Rivera J. Mori T, and Beilin L. Study of plasma factors associated with neutrophil activation and lipid peroxidation in preeclampsia. *Hypertension* 38: 803–808, 2001.
- Barden A, Zilkens RR, Croft K, Mori T, Burke V, Beilin LJ, and Puddey IB. A reduction in alcohol consumption is associated with reduced plasma F₂-isoprostanes and urinary 20-HETE excretion in men. Free Radic Biol Med 42: 1730– 1735, 2007.
- Barden AE, Mori TA, Dunstan JA, Taylor AL, Thornton CA, Croft KD, Beilin LJ, and Prescott SL. Fish oil supplementation in pregnancy lowers F₂-isoprostanes in neonates at high risk of atopy. *Free Radic Res* 38: 233–239, 2004
- Basu S. Carbon tetrachloride-induced lipid peroxidation: Eicosanoid formation and their regulation by antioxidant nutrients. *Toxicology* 189: 113–127, 2003.
- Basu S. Oxidative injury induced cyclooxygenase activation in experimental hepatotoxicity. *Biochem Biophys Res Commun* 254: 764–767, 1999.
- Basu S. Radioimmunoassay of 8-isoprostaglandin F_{2x}: An index for oxidative injury via free radical catalysed lipid peroxidation. *Prostagland Leukotri Essent Fatty Acids* 58: 319–325, 1998.

- Basu S, Hellberg A, Ulus AT, Westman J, and Karacagil S. Biomarkers of free radical injury during spinal cord ischemia. FEBS Lett 508: 36–38, 2001.
- Beltowski J, Wojcicka G, and Jamroz A. Leptin decreases plasma paraoxonase 1 (PON1) activity and induces oxidative stress: The possible novel mechanism for proatherogenic effect of chronic hyperleptinemia. *Atherosclerosis* 170: 21–29, 2003.
- Beltowski J, Wojcicka G, Jamroz–Wisnirwska A, Borkowska E, and Marciniak A. Antioxidant treatment normalizes nitric oxide production, renal sodium handling and blood pressure in experimental hyperleptinemia. *Life Sci* 77: 1855–1868, 2005.
- 13. Brooks JD, Milne GL, Yin H, Sanchez SC, Porter NA, and Morrow JD. Formation of highly reactive cyclopentenone isoprostane compounds (A3/J3-Isoprostanes) *in vivo* from eicosapentaenoic acid. *J Biol Chem 283*: 12043–12055, 2008.
- Calabrese V, Mancuso C, Sapienza M, Puleo E, Calafato S, Cornelius C, Finocchiaro M, Mangiameli A, Di Mauro M, Stella AMG, and Castellino P. Oxidative stress and cellular stress response in diabetic nephropathy. *Cell Stress Chaperones* 12: 299–306, 2007.
- Cederberg J, Basu S, and Eriksson UJ. Increased rate of lipid peroxidation and protein carbonylation in experimental diabetic pregnancy. *Diabetologia* 44: 766–774, 2001.
- Chehne F, Oguogho A, Lupattelli G, Budinsky AC, Palumbo B, and Sinzinger H. Increase of isoprostane 8-epi-PGF_{2a} after restarting smoking. *Prostagland Leukotri Essent Fatty Acids* 64: 307–310, 2001.
- Chehne F, Oguogho A, Lupattelli G, Palumbo B, and Sinzinger H. Effect of giving up cigarette smoking and restarting in patients with clinically manifested atherosclerosis. Prostagland Leukotri Essent Fatty Acids 67: 333–339, 2002.
- Dai Q, Gao YT, Shu XO, Yang G, Milne G, Cai Q, Wen W, Rothman N, Cai H, Li H, Xiang Y, Chow WH, and Zheng W. Oxidative stress, obesity, and breast cancer risk: Results from the Shanghai women's health study. *J Clin Oncol* 27: 2482–2488, 2009.
- 19. Dalle-Donne I, Rossi R., Colombo R, Giustarini D, and Milzani A. Biomarkers of oxidative damage in human disease. *Clin Chem* 52: 601–623, 2006.
- Dhawan V and Jain S. Effect of garlic supplementation on oxidized low density lipoproteins and lipid peroxidation in patients of essential hypertension. *Mol Cell Biochem* 266: 109–115, 2004.
- 21. Dillon SA, Lowe GM, Billington D, and Rahman K. Dietary supplementation with aged garlic extract reduces plasma and urine concentration of 8-iso-prostaglandin $F_{2\alpha}$ in smoking and nonsmoking men and women. *J Nutr* 132: 168–171, 2002.
- 22. Dogra G, Ward N, Croft KD, Mori TA, Barrett HR, Herrmann SE, Irish AB, and Watts GF. Oxidant stress in nephrotic syndrome: Comparison of F₂-isoprostanes and plasma antioxidant potential. *Nephrol Dial Transplant* 16: 1626–1630, 2001.
- 23. Dolgowska B, Blogowski W, Kedzierska K; Safranow K, Jakubowska K, Olszewska M, Rac M, Chlubek D, and Ciechanowski K. Platelets arachidonic acid metabolism in patients with essential hypertension. *Platelets* 20: 242–249, 2009
- 24. Dreiβigacker U, Suchy MT, Maasen N, and Tsikas D. Human plasma concentrations of malondialdehyde (MDA) and the F₂-isoprostane 15(*S*)-8-*iso*-PGF2α may be markedly

- comprised by hemolysis: Evidence by GC-MS/MS and potential analytical and biological ramifications. *Clin Biochem* 43:159–167, 2010.
- 25. Feillet–Coudray C, Chone F, Michel F, Roack E, Thieblot P, Rayssiguier Y, Tauveron I, and Mazur A. Divergence in plasmatic and urinary isoprostane levels in type 2 diabetes. *Clin Chim Acta* 324: 25–30, 2002.
- 26. Gao L, Yin H, Milne GL, Porter NA, and Morrow JD. Formation of F-ring isoprostane-like compounds (F₃-isoprostanes) *in vivo* from eicosapentaenoic acid. *J Biol Chem* 281: 14092–14099, 2006.
- 27. Garcia–Naveiro R, Rodriguez–Carmona A, and Perez–Fontan M. Agreement between two routine methods of estimation of glomerular filtration rate in patients with advanced and terminal chronic renal failure. Clin Nephrol 64: 271–280, 2005.
- 28. Giustarini D, Dalle-Donne I, Tsikas D, and Rossi R. Oxidative stress and human disease: Origin, link, measurement, mechanisms, and biomarkers. *Crit Rev Clin Lab Sci* 46: 241–248, 2009.
- 29. Gopaul NK, Halliwell B, and Anggard EE. Measurement of plasma F₂-isoprostanes as an index of lipid peroxidation does not appear to be confounded by diet. *Free Radic Res* 33: 115–127; 2000.
- 30. Gruber J, Tang SY, Jenner AM, Mudway I, Blomberg A, Behndig A, Kasiman K, Lee CY, Seet RC, Zhang W, Chen C, Kelly F, and Halliwell B. Allantoin in human plasma, serum and nasal lining fluids as a biomarker of oxidative stress; Avoiding artifacts and establishing real in vivo concentrations. Antioxid Redox Signal 11: 1767–1776; 2009.
- 31. Halliwell B. Role of free radicals in the neurodegenerative diseases. Therapeutic implications for antioxidant treatment. *Drugs Aging* 18:685–716; 2001.
- 32. Halliwell B. The wanderings of a free radical. *Free Radic Biol Med.* 46: 531–542, 2009.
- 33. Halliwell B and Gutteridge JMC. *Free radicals in biology and medicine*. Fourth ed. Oxford, United Kingdom: Oxford University Press, 2007.
- 34. Il'yasova D, Morrow JD, Ivanova A, and Wagenknecht LE. Epidemiological marker for oxidant status: Comparison of the ELISA and the gas chromatography/mass spectrometry assay for urine 2,3-dinor-5,6, -dihydro-15- F2t-isoprostane. *Ann Epidemiol* 14: 793–797, 2004.
- 35. Il'yasova D, Morrow JD, and Wagenknecht LE. Urinary F₂isoprostanes are not associated with increased risk of type 2
 diabetes. *Obesity Res* 13:1638–1644, 2005.
- Ishihara O, Hayashi M, Osawa H, Kobayashi K, Takeda S, Vessby B, and Basu S. Isoprostanes, prostaglandins and tocopherols in pre-eclampsia, normal pregnancy and nonpregnancy. Free Radic Res 38: 913–918, 2004.
- 37. Jackson AS, Sandrini A, Campbell C, Chow S, Thomas PS, and Yates DH. Comparison of biomarkers in exhaled breath condensate and bronchoalveolar lavage. *Am J Respir Crit Care Med* 175: 222–227, 2007.
- 38. Jahn U, Galano J, and Durand T. Beyond prostaglandins: Chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. *Angew Chem Int Ed* 47: 5894–5955, 2008.
- Jamroz-Wisniewska A, Wojcicka G, Lowicka E, Ksiazek M, and Beltwski J. Transactivation of epidermal growth factor receptor in vascular and renal systems in rats with experimental hyperleptinemia: Role in leptin-induced hypertension. *Biochem Pharmacol* 75: 1623–1638, 2008.

- 40. Kadiiska MB, Gladen BC, Baird DD, Germolec D, Graham LB, Parker CE, Nyska A, Wachsman JT, Ames BN, Basu S, Brot N, FitzGerald GA, Floyd RA, George M, Heinecke JW, Hatch GE, Hensley K, Lawson JA, Marnett LJ, Morrow JD, Murray DM, Plastaras J, Roberts LJ 2nd, Rokach J, Shigenaga, MK, Sohal RS, Sun J, Tice RR, Va Thiel DH, Wellner D, Walter PB, Tomer KB, Mason RP, and Barrett JC. Biomarkers of oxidative stress study II. Are oxidation products of lipids, proteins, and DNA markers of CCl₄ poisoning? Free Radic Biol Med 38: 698–710, 2005.
- 41. Kadiiska MB, Gladen BC, Baird DD, Graham LB, Parker CE, Ames BN, Basu S, FitzGerald GA, Lawson JA, Marnett LJ, Morrow JD, Murray DM, Plastaras J, Roberts LJ 2nd, Rokach J, Shigenaga MK, Sun J, Walter PB, Tomer KB, and Mason RP. Biomarkers of oxidative stress study III. Effects of the nonsteroidal anti-inflammatory agents indomethacin and meclofenamic acid on measurements of oxidative products of lipids in CCl₄ poisoning. Free Radic Biol Med 38: 711–718, 2005.
- 42. Kamezaki F, Yamashita K, Tasaki H, Kume N, Mitsuoka H, Kita T, Adachi T, and Otsuji Y. Serum soluble lectin-like oxidized low-density lipoprotein receptor-1 correlates with oxidative stress markers in stable coronary artery disease. *Int J Cardiol* 134: 285–287, 2009.
- 43. Karabina SA, Elisaf M, Bairaktari E, Tzallas C, Siamopulos KC, and Tselepis AD. Increased activity of platelet-activating factor acetylhydrolase in low-density lipoprotein subfractions induces enhanced lysophophatidylcholine production during oxidation in patients with heterozygous familial hypercholesterolemia. Eur J Clin Invest. 27: 595–602, 1997.
- 44. Kelly RP, Yeo KP, Isaac HB, Lee CYJ, Huang SH, Teng L, Halliwell B, and Wise SD. Lack of effect of acute oral ingestion of vitamin C on oxidative stress, arterial stiffness or blood pressure in healthy subjects. *Free Radic Res* 42: 514–522, 2008.
- 45. Kontush A, Cotta de Faria E, Chantepie S, and Chapman MJ. A normotriglyceridemic, low HDL-cholesterol phenotype is characterized by elevated oxidative stress and HDL particles with attenuated antioxidative activity. *Atherosclerosis* 182: 277–285, 2005.
- 46. Kriska T, Marathe GK, Schmidt JC, McIntyre TM, and Girotti QW. Phospholipase action of platelet-activating factor acetylhydrolase, but not paraoxonase-1, on long fatty acyl chain phospholipid hydroperoxides. *J Biol Chem* 282: 100–108, 2007.
- 47. Lee CYJ, Isaac HB, Huang SH, Long LH, Wang H, Gruber J, Ong CN, Kelly RP, and Halliwell B. Limited antioxidant effect after consumption of a single dose of tomato sauce by young males, despite a rise in plasma lycopene. Free Radic Res 43: 622–628, 2009.
- 48. Lee CYJ, Isaac HB, Wang H, Huang SH, Long LH, Jenner AM, Kelly RP, and Halliwell B. Cautions in the use of biomarkers of oxidative damage; the vascular and antioxidant effects of dark soy sauce in humans. *Biochem Biophys Res Commun* 344: 906–911, 2006.
- Lee CYJ, Jenner AM, and Halliwell B. Rapid preparation of human urine and plasma samples for analysis of F₂isoprostanes by gas chromatography-mass spectrometry. *Biochem Biophys Res Commun* 320: 696–702, 2004.
- 50. Lee CYJ, Seet RCS, Huang SH, Long LH, and Halliwell B. Different patterns of oxidized lipid products in plasma and urine of dengue fever, stroke, and Parkinson's disease patients: Cautions in the use of biomarkers of oxidative stress. *Antioxid Redox Signal* 11: 407–420, 2009.

 Levine M, Wang Y, Padayatty SJ, and Morrow J D. A new recommended dietary allowance of vitamin C for healthy young women. *Proc Natl Acad Sci* 98: 9842–9846, 2001.

- 52. Liu ML, Yitalo K, Salonen R, Salonen JT and Taskinene MR. Circulating oxidized low-density lipoprotein and its association with carotid intima-media thickness in asymptomatic members of familial combined hyperlipidemia families. *Arterioscler Thromb Vasc Biol* 24: 1492–1497, 2004.
- 53. Liu W, Morrow JD, and Yin H. Quantification of F₂-isoprostanes as a reliable index of oxidative stress in vivo using gas chromatography-mass spectrometry (GC-MS) method. Free Radic Biol Med 47: 1101–1107, 2009.
- 54. Loke WM, Hodgson JM, Proudfoot JM, McKinley AJ, Puddey IB, and Croft K. Pure dietary flavonoids quercetin and (-)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am J Clin Nutr 88: 1018–1025, 2008.
- 55. MacRitchie AN, Gardner AA, Prescott SM, and Stafforini DM. Molecular basis for susceptibility of plasma platelet-activating factor acetylhydrolase to oxidative inactivation. *FASEB J* 21: 1164–1176, 2007.
- Matatyatsuk C, Lee CYJ, Kalpravidh W, Sirankapracha P, Wilairat P, Fucharoen S, and Halliwell B. Elevated F₂isoprostanes in thalassemic patients. Free Radic Biol Med 43: 1649–1655, 2007.
- 57. McAnulty SR, Owens JT, McAnulty LS, Nieman DC, Morrow JD, Dumke CL, and Milne GL. Ibruprofen use during extreme exercise: Effects on oxidative stress and PGE₂. Med Sci Sports Exerc 39: 1075–1079, 2007.
- 58. McKinney ET, Shouri R, Hunt RS, Ahokas RA, and Sibai BM. Plasma, urinary and salivary 8-epi-prostaglandin $F_{2\alpha}$ levels in normotensive and preeclamptic pregnancies. *Am J Obstet Gynecol* 183: 874–878, 2000.
- 59. Meng S, Roberts LJ 2nd, Cason GW, Curry TS, and Manning D Jr. Superoxide dismutase and oxidative stress in Dahl salt-sensitive and –resistant rats. Am J Physiol Regul Integr Comp Physiol 283: R732–R738, 2002.
- 60. Montero A, Munger KA, Khan RZ, Valdivielso JM, Morrow JD, Guasch A, Ziyadeh FN, and Badr KF. F₂-isoprostanes mediate high glucose-induced TGF-β synthesis and glomerular proteinuria in experimental type I diabetes. *Kidney Intl* 58: 1963–1972, 2000.
- 61. Montine TJ, Quinn JF, Milatovic D, Silbert LC, Dang T, Sanchez S, Terry E, Roberts LJ 2nd, Kaye JA, and Morrow JD. Peripheral F₂-isoprostanes and F₄-neuroprostanes are not increased in Alzheimer's disease. *Ann Neurol* 52: 175–179, 2002.
- 62. Montine TJ, Shinobu L, Montine KS, Roberts LJ 2nd, Kowall NW, Beal MF, and Morrow JD. No difference in plasma or urinary F₂-isoprostanes among patients with Huntington's disease or Alzheimer's disease and controls. *Ann Neurol* 48: 950, 2000.
- 63. Montuschi P, Barnes PJ, and Roberts LJ 2nd. Isoprostanes: Markers and mediators of oxidative stress. *FASEB J* 18: 1791–1800, 2004.
- 64. Montuschi P, Barnes P, and Roberts LJ 2nd. Insights into oxidative stress. *Curr Med Chem* 14: 703–717, 2007.
- 65. Montuschi P, Ciabattoni G, Paredi P, Pantelidis P, du Bois RM, Kharitonov SA, and Barnes PJ. 8-isoprostane as a biomarker of oxidative stress in interstitial lung diseases. *Am J Respir Crit Care Med* 158: 1524–1527, 1998.
- 66. Montuschi P, Corradi M, Ciabattoni G, Nightingale J, Kharitonov SA, and Barnes PJ. Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med 160: 216–220, 1999.

- 67. Montuschi P, Ragazzoni E, Valente S, Corbo G, Mondino G, Ciappi G, and Ciabattoni G. Validation of 8-isoprostane and prostaglandin E2 measurements in exhaled breath condensate. *Inflamm Res* 52: 502–507, 2003.
- 68. Morrow JD. Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. *Aterioscler Thromb Vasc Biol* 25:279–286, 2005.
- 69. Morrow JD, Awad JA, Boss HJ, Blair IA, and Roberts LJ 2nd. Non-cyclooxygenase-derived prostanoids (F₂isoprostanes) are formed in situ on phospholipids. *Proc Natl* Acad Sci USA. 89: 10721–10795, 1992.
- Morrow JD, Frei B, Longmire AW, Gaziano JM, Lynch SM, Shyr Y, Strauss WE, Oates JA, and Roberts LJ 2nd. Increase in circulating products of lipid peroxidation (F₂isoprostanes) in smokers. N Engl J Med 332: 1198–1203, 1995.
- Morrow JD, Hill KA, Burk RF, Nammour TM, Badr KF, and Roberts LJ 2nd. A series of prostaglandin F₂-like compounds are produced *in vivo* in humans by a noncyclooxygenase, free radical-catalyzed mechanism. *Proc Natl Acad Sci USA*. 87: 9383–9387, 1990.
- Nieman DC, Henson DA, McAnulty SR, McAnulty LS, Morrow JD, Ahmed A, and Heward CB. Vitamin E and immunity after the Kona triathlon world championship. Med Sci Sports Exer 1328–1335, 2004.
- 73. Niki E. Lipid peroxidation: Physiological levels and dual biological effects. *Free Radic Biol Med* 47: 469–484, 2009.
- 74. Nobecourt E, Jacqueminet S, Hansel B, Chantepie S, Grimaldi A, Chapman MJ, and Kontush A. Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: Relationship to elevated oxidative stress and hyperglycaemia. *Diabetologia* 48: 529–538, 2005.
- Nourooz–Zadeh J, Cooper MB, Ziegler D, and Betteridge DJ. Urinary 8-epi-PGFalpha and its endogenous betaoxidation products (2,3-dinor and 2,3-dinor-5,6-dihydro) as biomarkers of total body oxidative stress. *Biochem Biophys Res Commun* 330: 731–736, 2005.
- Nourooz–Zadeh J, Halliwell B, and Anggard EE. Evidence for the formation of F₃-isoprostanes during peroxidation of eicosapentaenoic acid. *Biochem Biophys Res Commun* 236: 467–472, 1997.
- 77. Nourooz–Zadeh J, Liu EHC, Yhlen B, Anggard EE, and Halliwell B. F₄-Isoprostanes as specific markers of docosahexaenoic acid (DHA) peroxidation in Alzheimer's disease. *J Neurochem* 72: 734–740, 1999.
- Ogugho A, Ferlitsch A, and Sinzinger H. LDL-apheresis decreases plasma levels and urinary excretion of 8-epi-PGF_{2α}. Prostagland Leukotri Essent Fatty Acids 62: 209–216, 2000.
- 79. Oguogho A, Kaliman J, and Sinzinger H. Eicosanoid generation and responsiveness of human lymphatics in hyperlipoproteinemia. *Prostagland Leukotri Essent Fatty Acids* 62: 47–52, 2000.
- Papavasiliou EC, Gouva C, Siamopoulos KC, and Tselepis AD. PAF-acetylhydrolase activity in plasma of patients with chronic kidney disease. Effect of long-term therapy with erythropoietin. Nephrol Dial Transplant 21:1270–1277, 2006.
- 81. Pemberton PW, Aboutwerat A, Smith A, Burrows PC, McMahon RFT, and Warnes TW. Oxidant stress in type I autoimmune hepatitis: the link between necroinflammation and fibrogenesis? *Biochim Biophys Acta* 1689: 182–189, 2004.
- 82. Pemberton PW, Smith A, and Warnes TW. Non-invasive monitoring of oxidant stress in alcoholic liver disease. *Scand J Gastroent* 40: 1102–1108, 2005.

- 83. Pilz H, Oguogho A, Chehne F, Lupattelli G, Palumbo B, and Sinzinger H. Quitting cigarette smoking results in a fast improvement of *in vivo* oxidation injury (determined via plasma, serum and urinary isoprostane). *Thromb Res* 99: 209–221, 2000.
- 84. Poulsen HE, Weimann A, and Halliwell B. Cigarette smoke and oxidative DNA modification. In *Cigarette Smoke and Oxidative Stress*. Springer-Verlag Berlin Heidelberg, pp. 388–396; 2006.
- Proudfoot JM, Barden AE, Loke WM, Croft KD, Puddey IB, and Mori T. HDL is the major lipoprotein carrier of plasma F₂-isoprostanes. *J Lipid Res* 50: 716–722, 2009.
- Richelle M, Turini ME, Guidoux R, Tavazzi I, Metairon S, and Fay LB. Urinary isoprostane excretion is not confounded by the lipid content of the diet. FEBS Lett 459: 259– 262, 1999.
- 87. Roberts LJ 2nd, Montine TK, Markesbery WR, Tapper AR, Hardy P, Chemtob S, Wolff DD, and Morrow JD. Formation of isoprostane-like compounds (neuroprostanes) *in vivo* from docosahexaenoic acid. *J Biol Chem* 273: 13605–13612, 1998.
- 88. Roberts LJ 2nd, Moore KP, Zachert WE, Oates JA, and Morrow JD. Identification of the major urinary metabolite of the F_2 -isoprostane, 8-iso-prostaglandin $F_{2\alpha}$ in humans. *J Biol Chem* 271: 20617–20620, 1996.
- 89. Roberts LJ 2nd and Morrow JD. Measurement of F₂-isoprostanes as an index of oxidative stress *in vivo. Free Radic Biol Med* 28: 505–513, 2000.
- Rodrigo R, Bosco C, Herrer P, and Rivera G. Amelioration of myoglobinuric renal damage in rats by chronic exposure to flavonol-rich red wine. *Nephrol Dial Transplant* 19: 2237– 2244, 2004.
- 91. Rodrigo R, Prat H, Passalacqua W, Araya J, Guichard C, and Bachler JP. Relationship between oxidative stress and essential hypertension. *Hypertens Res* 30: 1159–1167, 2007.
- 92. Rogers MS, Wang CCR, Tam WH, Li CY, Chu Ko, and Chu CY. Oxidative stress in midpregnancy as a predictor of gestational hypertension and pre-eclampsia. *Brit J Obstet Gynae* 113: 1053–1059, 2006.
- 93. Rokach J, Kim S, Bellone S, Lawson JA, Pratico D, Powell WS, and FitzGerald GA. Total synthesis of isoprostanes: Discovery and quantification in biological systems. *Chem Phys Lipids* 128: 35–56, 2004.
- 94. Schwedhelm E, Bartling A, Lenzen H, Tsikas D, Maas R, Brümmer J, Gutzki FM, Berger J, Frölich JC, and Böger RH. Urinary 8-iso-prostaglandin $F_{2\alpha}$ as a risk marker in patients with coronary heart disease. A matched case-control study. *Circulation* 109: 843–848, 2004.
- 95. Schwedhelm E, Benndorf RA, Böger RH, and Tsikas D. Mass spectrometric analysis of F₂-isoprostanes: Markers and mediators in human disease. *Curr Pharm Anal* 3: 39–51, 2007.
- 96. Schwedhelm E, Tsikas D, Durand T, Gutzki FM, Guy A, Rossi JC, and Frölich JC. Tandem mass spectrometric quantification of 8-iso-prostaglandin $F_{2\alpha}$ and its metabolite 2,3-dinor-5,6-dihydro-8-iso-prostaglandin $F_{2\alpha}$ in human urine. *J Chromatogr B* 744: 99–112, 2000.
- 97. Seet RCS, Lee CYJ, Lim ECH, Quek AML, Yeo LLL, Huang SH, and Halliwell B. Oxidative damage in dengue fever. *Free Radic Biol Med* 47: 375–380, 2009.
- 98. Sicilia T, Mally A, Schauer U, Pähler A, and Völkel W. LC-MS/MS methods for the detection of isoprostanes (iPF $_{2\alpha}$ -III and 8,12-iso-iPF $_{2\alpha}$ -VI) as biomarkers of CCl $_4$ -induced oxidative damage to hepatic tissue. *J Chromatogr B* 861: 48–55, 2008.

 Sinzinger H, Chehne F, and Lupattelli G. Oxidation injury in patients receiving HMG-CoA reductase inhibitors. Occurrence in patients without enzyme elevation or myopathy. *Drug Safety* 25: 877–883, 2002.

- 100. Sinzinger H, Lupattelli G, Chehne F, Oguogho A, and Furberg CD. Isoprostane 8-epi-PGF2α is frequently increased in patients with muscle pain and/or CK-elevation after HMG-Co-enzyme-A-reductase inhibitor therapy. *J Clin Pharm Ther* 26: 303–310, 2001.
- 101. Sodergren E, Cederberg J, Basu S, and Vessby B. Vitamin E supplementation decreases basal levels of F_2 -isoprostanes and prostaglandins $F_{2\alpha}$ in rats. *J Nutr* 130: 10–14, 2000.
- 102. Sodergren E, Cederberg J, Vessby B, and Basu S. Vitamin E reduces lipid peroxidation in experimental hepatoxicity in rats. *Eur J Nutr* 40: 10–16, 2001.
- 103. Stafforini DM. Biology of platelet-activating factor acetylhydrolase (PAF-AH, lipoprotein-associated phospholipase A₂). Cardiovasc Drugs Ther 23: 73–83, 2009.
- 104. Stafforini DM Sheller JR, Blackwell TS, Sapirstein A, Yull FE, McIntyre M, Bonventre JV, Prescott SM, and Roberts LJ 2nd. Release of free F₂-isoprostanes from esterified phospholipids is catalyzed by intracellular and plasma platelet-activating factor acetylhydrolases. *J Biol Chem* 281: 4616–4623, 2006.
- 105. Stojiljkovic MP, Lopes HF, Zhang D, Morrow JD, Goodfriend TL, and Egan BM. Increasing plasma fatty acids elevates F₂-isoprostanes in humans: Implications for cardiovascular risk factor cluster. *J Hypertens* 20: 1215–1221, 2002.
- 106. Tsikas D, Schwedhelm E, Suchy M, Niemann J, Gutzki D, Erpenbeck VJ, Hohlfeld JM, Surdacki A, and Frölich JC. Divergence in urinary 8-iso-PGF $_{2\alpha}$ (iPF2a-III, 15-F $_{2\tau}$ -IsoP) levels from gas chromatography-tandem mass spectrometry quantification after thin-layer chromatography and immunoaffinity column chromatography reveals heterogeneity of 8-iso-PGF $_{2\alpha}$. Possible methodological, mechanistic and clinical implications. *J Chromatogr A* 794: 237–255, 2003.
- 107. Vessby J, Basu S, Mohsen R, Berne C, and Vessby B. Oxidative stress and antioxidant status in type I diabetes mellitus. *J Int Med* 251: 69–76, 2001.
- 108. Waddington WI, Croft KD, Sienuarine K, Latham C, and Puddey IB. Fatty acid oxidation products in human atherosclerotic plaque: An analysis of clinical and histopathological correlates. *Atherosclerosis* 167: 111–120, 2003.
- 109. Ward NC, Hodgson JM, Croft KD, Burke V, Beilin LJ, and Puddey IB. The combination of vitamin C and grape-seed polyphenols increases blood pressure: A randomized, double-blind, placebo-controlled trial. J Hypertens 23: 427– 434, 2005.
- 110. Ward NC, Hodgson JM, Puddey IB, Mori TA, Beilin LJ, and Croft K. Oxidative stress in human hypertension: Association with antihypertensive treatment, gender, nutrition, and lifestyle. *Free Radic Biol Med* 36: 226–232, 2004.
- 111. Wolfram RM, Budinsky AC, Palumbo B, Palumbo R, and Sinzinger H. Radioiodine therapy induces dose-dependent

- *in vivo* oxidation injury: Evidence by increased isoprostane 8-epi-PGF_{2x}. *J Nucl Med* 43: 1254–1258, 2002.
- 112. Wu JHY, Ward NC, Indrawan AP, Almeida CA, Hodgson JM, Proudfoot JM, Puddey IB, and Croft KD. Effects of a-tocopherol and mixed tocopherol supplementation on markers of oxidative stress and inflammation type 2 diabetes. Clin Chem 53: 511–519, 2007.

Address correspondence to:
Prof. Barry Halliwell
Department of Biochemistry
National University of Singapore
8 Medical Drive
Singapore 117597
Republic of Singapore

E-mail: bchbh@nus.edu.sg

Date of first submission to ARS Central, October 5, 2009; date of final revised submission, December 13, 2009; date of acceptance, December 14, 2009.

Abbreviations Used

8-Iso-PGF_{2 α} = 8-iso-prostaglandin F_{2 α}

AA = arachidonic acid

BHT = butylated hydroxytoluene

 CCl_4 = carbon tetrachloride

EIA = enzyme immunoassay

ELISA = enzyme linked immunoabsorbent assav

 F_2 -IsoPs = F_2 -isoprostanes

GC/MS = gas chromatography/mass

spectrometry

GC/MS/MS = gas chromatography tandem mass spectrometry

HDL = high density lipoproteins

HPLC = high performance liquid chromatography

IsoPs = isoprostanes

LC/MS = liquid chromatography/mass spectrometry

LC/MS/MS = liquid chromatography tandem mass spectrometry

LDL = low density lipoproteins

MS = mass spectrometry

PAF = platelet activating factor

PAF-AH = platelet activating factor acetylhydrolase

 $PLA_2 = phospholipase A_2$

RIA = radioimmunoassay

ROS = reactive oxygen species

This article has been cited by:

- 1. Dora Il'yasova, Peter Scarbrough, Ivan Spasojevic. 2012. Urinary biomarkers of oxidative status. *Clinica Chimica Acta* **413**:19-20, 1446-1453. [CrossRef]
- 2. Ginger L. Milne, Benlian Gao, Erin S. Terry, William E. Zackert, Stephanie C. Sanchez. 2012. Measurement of Isoprostanes and Isofurans using Gas Chromatography-Mass Spectrometry. *Free Radical Biology and Medicine*. [CrossRef]
- 3. Etsuo Niki. 2012. Do antioxidants impair signaling by reactive oxygen species and lipid oxidation products?. *FEBS Letters* . [CrossRef]
- 4. Daniela Giustarini, Isabella Dalle-Donne, Sauro Lorenzini, Enrico Selvi, Graziano Colombo, Aldo Milzani, Paolo Fanti, Ranieri Rossi. 2012. Protein thiolation index (PTI) as a biomarker of oxidative stress. *Free Radical Biology and Medicine* 53:4, 907-915. [CrossRef]
- 5. Abdelmoneim Younis, Cynthia Clower, Deanna Nelsen, William Butler, Andrew Carvalho, Eden Hok, Mahdi Garelnabi. 2012. The relationship between pregnancy and oxidative stress markers on patients undergoing ovarian stimulations. *Journal of Assisted Reproduction and Genetics*. [CrossRef]
- 6. Barry Halliwell. 2012. Free radicals and antioxidants: updating a personal view. Nutrition Reviews 70:5, 257-265. [CrossRef]
- 7. Christian G. Daughton. 2012. Using biomarkers in sewage to monitor community-wide human health: Isoprostanes as conceptual prototype. *Science of The Total Environment* **424**, 16-38. [CrossRef]
- 8. Etsuo NikiLipid Peroxidation . [CrossRef]
- Michalis G. Nikolaidis, Antonios Kyparos, Konstantina Dipla, Andreas Zafeiridis, Michalis Sambanis, Gerasimos V. Grivas, Vassilis Paschalis, Anastasios A. Theodorou, Stavros Papadopoulos, Chrysoula Spanou, Ioannis S. Vrabas. 2012. Exercise as a model to study redox homeostasis in blood: the effect of protocol and sampling point. *Biomarkers* 17:1, 28-35. [CrossRef]
- Guilherme A. Behr, José C. F. Moreira, Benicio N. Frey. 2012. Preclinical and Clinical Evidence of Antioxidant Effects of Antidepressant Agents: Implications for the Pathophysiology of Major Depressive Disorder. *Oxidative Medicine and Cellular Longevity* 2012, 1-13. [CrossRef]
- 11. Jang-Young Kim, Jun-Won Lee, Young-Jin Youn, Min-Soo Ahn, Sung-Gyun Ahn, Byung-Su Yoo, Seung-Hwan Lee, Junghan Yoon, Kyung-Hoon Choe. 2012. Urinary Levels of 8-Iso-Prostaglandin F2# and 8-Hydroxydeoxyguanine as Markers of Oxidative Stress in Patients With Coronary Artery Disease. *Korean Circulation Journal* 42:9, 614. [CrossRef]
- 12. Raymond C.S. Seet, Chung-Yung J. Lee, Erle C.H. Lim, Amy M.L. Quek, Huiwen Huang, Shan Hong Huang, Woan Foon Looi, Lee Hua Long, Barry Halliwell. 2011. Oral zinc supplementation does not improve oxidative stress or vascular function in patients with type 2 diabetes with normal zinc levels. *Atherosclerosis* 219:1, 231-239. [CrossRef]
- 13. Irwin K. Cheah, Barry Halliwell. 2011. Ergothioneine; antioxidant potential, physiological function and role in disease. *Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease*. [CrossRef]
- 14. Victor Y. Fujimoto, Michael S. Bloom, Heather G. Huddleston, Wendy B. Shelley, Andrew J. Ocque, Richard W. Browne. 2011. Correlations of follicular fluid oxidative stress biomarkers and enzyme activities with embryo morphology parameters during in vitro fertilization. *Fertility and Sterility*. [CrossRef]
- 15. Pilar Codoñer-Franch, Victoria Valls-Bellés, Angela Arilla-Codoñer, Eulalia Alonso-Iglesias. 2011. Oxidant mechanisms in childhood obesity: the link between inflammation and oxidative stress. *Translational Research*. [CrossRef]
- 16. Ginger L. Milne, Huiyong Yin, Klarissa D. Hardy, Sean S. Davies, L. Jackson Roberts. 2011. Isoprostane Generation and Function. *Chemical Reviews* 110906103750063. [CrossRef]
- 17. J. Vidya Sarma, Peter A. WardOxidants and Redox Signaling in Acute Lung Injury . [CrossRef]
- 18. G.H. Koek, P.R. Liedorp, A. Bast. 2011. The role of oxidative stress in non-alcoholic steatohepatitis. *Clinica Chimica Acta* **412**:15-16, 1297-1305. [CrossRef]
- 19. Tsogzolmaa Dorjgochoo, Yu-Tang Gao, Wong-Ho Chow, Xiao-ou Shu, Gong Yang, Quiyin Cai, Nathaniel Rothman, Hui Cai, Honglan Li, Xinqing Deng, Martha J. Shrubsole, Harvey Murff, Ginger Milne, Wei Zheng, Qi Dai. 2011. Obesity, Age, and Oxidative Stress in Middle-Aged and Older Women. *Antioxidants & Redox Signaling* 14:12, 2453-2460. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]
- 20. Raymond C.S. Seet, Chung-Yung J. Lee, Wai Mun Loke, Shan Hong Huang, Huiwen Huang, Woan Foon Looi, Eng Soh Chew, Amy M.L. Quek, Erle C.H. Lim, Barry Halliwell. 2011. Biomarkers of oxidative damage in cigarette smokers: Which biomarkers might reflect acute versus chronic oxidative stress?. *Free Radical Biology and Medicine* **50**:12, 1787-1793. [CrossRef]

- 21. Judith A. Voynow, Apparao Kummarapurugu. 2011. Isoprostanes and asthma. *Biochimica et Biophysica Acta (BBA) General Subjects*. [CrossRef]
- 22. Michalis G. Nikolaidis, Antonios Kyparos, Ioannis S. Vrabas. 2011. F2-isoprostane formation, measurement and interpretation: The role of exercise. *Progress in Lipid Research* **50**:1, 89-103. [CrossRef]
- 23. K Wingler, JJR Hermans, P Schiffers, AL Moens, M Paul, HHHW Schmidt. 2011. NOX 1, 2, 4, 5: Counting out oxidative stress. *British Journal of Pharmacology* no-no. [CrossRef]
- 24. Guilherme Antônio Behr, Carlos Eduardo Schnorr, José Cláudio Fonseca Moreira. 2011. Increased blood oxidative stress in experimental menopause rat model: the effects of vitamin A low-dose supplementation upon antioxidant status in bilateral ovariectomized rats. *Fundamental & Clinical Pharmacology* no-no. [CrossRef]
- 25. Camille Oger, Valérie Bultel-Poncé, Alexandre Guy, Laurence Balas, Jean-Claude Rossi, Thierry Durand, Jean-Marie Galano. 2010. The Handy Use of Brown's P2-Ni Catalyst for a Skipped Diyne Deuteration: Application to the Synthesis of a [D4]-Labeled F4t-Neuroprostane. *Chemistry A European Journal* **16**:47, 13976-13980. [CrossRef]
- 26. Fangwen Rao, Kuixing Zhang, Srikrishna Khandrika, Manjula Mahata, Maple M. Fung, Michael G. Ziegler, Brinda K. Rana, Daniel T. O'Connor. 2010. Isoprostane, an "Intermediate Phenotype" for Oxidative Stress. *Journal of the American College of Cardiology* **56**:16, 1338-1350. [CrossRef]
- 27. Melanie E Armitage, Mylinh La, Harald HHW Schmidt, Kirstin Wingler. 2010. Diagnosis and individual treatment of cardiovascular diseases: targeting vascular oxidative stress. *Expert Review of Clinical Pharmacology* **3**:5, 639-648. [CrossRef]